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We present a mathematical description of a Quasioptical Vector Interfer- 
ometer (QVI), a device that maps an input polarization state to an output 
polarization state by introducing a phase delay between two linear orthogonal 
components of the input polarization. The advantages of such a device over 
a spinning wavelplate modulator for measuring astronomical polarization in 
the far-infrared through millimeter are: 1. The use of small, linear motions 
elimates the need for cryogenic rotational bearings, 2. The phase flexibility 
allows measurement of Stokes V as well as Q and U, and 3. The QVI 
allows for both multi-wavelength and broadband modulation. We suggest two 
implementations of this device as an astronomical polarization modulator. 
The first involves two such modulators placed in series. By adjusting the two 
phase delays, it is possible to use such a modulator to measure Stokes Q, U, 
and V for passbands that are not too large. Conversely, a single QVI may be 
used to measure Q and V independent of frequency. In this implementation, 
Stokes U must be measured by rotating the instrument. We conclude this 
paper by presenting initial laboratory results. @ 2005 Optical Societ,y of 
America 
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1. Introduction 

Astronomical polarimetry is currently drawing much attention, mostly due to the anticipated 
high-sensitivity searches for the so-called “B-modes” of the Cosmic Microwave Background 
Polarization. These signatures of gravitational waves produced during the inflationary epoch 
will provide a direct measurement of the energy scale of inflation. The amplitude of the 
B-modes is theorized to  be to lov9 of the power of the CMB, and so its measurement 
will require a good modulation strategy and an unprecedented control of systematics. 

The emission from magnetically-aligned dust in our Galaxy provides a contaminant that 
will have to be understood in order to correctly extract the B-modes from the total signal. 
On the other hand, this polarized emission provides a tool for analyzing the role of magnetic 
fields in star formation, and with the advent of multi-wavelength submillimeter and far- 
infrared photometers such as SCUBA2’ and HAWC/SOFIA,2 there is an opportunity to 
expand this field of study. To take advantage of the new detector technology that will be 
coming online in the next few years, it is necessary to develop the polarization modulation 
technology that will enable the conversion of these photometers into polarimeters. 

Fundamentally, polarization arises as a result of statistical correlations between the electric 
field components in the plane perpendicular to the propagation direction. These correlations 
are represented by complex quantities, and so in the measurement of polarized light, it is con- 
venient to use real linear combinations of these correlations, namely, the Stokes parameters, 
I ,  Q, U, and V .  

It is possible to trace the polarization state of radiation through a quasioptical system by 
determining the transformations describing the mapping of the input to output polarization 
states. We are specifically concerned with the class of optical elements for which Stokes I is 
decoupled from the other Stokes parameters. For this class of elements, the polarization, 

P2 = Q2 + U2 + V 2  

is constant. This equation can be interpreted to describe the points on the surface of a 
sphere in a three dimensional space having Q, U, and V as its coordinate axes. This sphere 
is known as the Poincark sphere, and the action of any given ideal polarization modulator 
can be represented by a rotation (and possibly an inversion) in this space. Such an operation 
corresponds to the introduction of a phase delay between orthogonal polarizations, which 
is the physical mechanism at work in a polarization modulator. The two free parameters in 
any given transformation are the basis in which the phase delay is introduced and the mag- 
nitude of the phase delay itself. These two parameters directly define the orientation and the 
magnitude of the rotation on the Poincare sphere: the rotation axis is defined by the sphere 
diameter connecting the two polarization states between which the phase is introduced, and 
the magnitude of the rotation is equal to that of the introduced phase.3 
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In order to  measure the polarized part of a partially-polarized signal, it is desirable to 
separate the polarized part of the signal from the unpolarized part. This is especially crucial 
when the fractional polarization of the signal is small. One way to do this is to methodically 
change, or modulate, the polarized part of the signal (by changing one of the parameters of 
the polarization modulator) while leaving the unpolarized part unaffected. Periodic rotations 
in Poincark space can accomplish this encoding of the polarized component of the signal for 
subsequent synchronous demodulation and detection. A convenient way of formulating the 
problem is to  envision a detector that is sensitive to  Stokes Q when projected onto the sky 
in the absence of modulation. The polarization modulator then systematically changes the 
polarization state to which the detector is sensitive such that the polarization state of the 
light can be completely characterized. 

A common implementation of such a polarization modulator is a dielectric birefringent 
plate.4 A birefringent plate consists o f a  piece of birefringent material cut so as to delay one 
linear polarization component relative to the other by the desired amount (generally either 
to one-half or one-quarter of the wavelength of interest). In this case, the phase difference is 
fixed and the modulation is accomplished by physically rotating the birefringent plate. 

In contrast, we introduce a polarization modulator that  hold the basis of phase introduction 
contant and modulates the polarization by changing the magnitude of the phase difference. 
This Quasioptical Vector Interferometer (&VI) can be thought of as a Martin-Puplett inter- 
ferometer with the input polarizer removed. The relative phase between orthogonal linear 
polarizations can be adjusted by adjusting their physical path lengths. This type of device 
has features in common with the back end of a polarimeter that uses a Fresnel Romb and 
a Martin-Puplett interferometer in series.' Here, we describe two astronomical polarimeter 
architectures that employ QVIs to measure linear polarization. 

The first implementation involves two QVIs placed in series. In this case, we are assuming 
a narrow enough passband such that the phase delays introduced for the center wavelength 
approximately apply to  the whole band. The QvIs are configured as follows: the QVI that is 
closest to  the polarization-sensitive detector has its beam-spliting grid oriented at an angle of 
45" with respect to  the axis of the detector (Q-axis; see above), and the other interferometer 
has its grid oriented at 22.5" with respect to the detector axes. We show how full modulation 
of all linear and circular polarization states can be achieved with this device. The use of this 
architecture in a polarimeter that measures linear polarization can be understood as follows: 
If we set the interferometer closest to the source (interferometer 1) for zero phase delay, and 
switch the interferometer closest to the detector (interferometer 2) between delays of 0 and 
T ,  then the detector axes, as projected onto the plane of the sky, will switch between Q and 
-&. With interferometer 1 set to a phase delay of T ,  switching interferometer 2 between 0 
and 7r will project the detector axes to fU. The dual QVIs provide two degrees of freedom, 
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namely the phase delays for each interferometer. The angles selected for the two basis sets 
are those for which the two degrees of freedom correspond to orthogonal coordinates on the 
Poincar6 sphere, thus allowing all polarization states to be accessible to the detector. 

For passbands for which the above approximation fails, one can use a single QVI to measure 
Stokes Q and V as a function of frequency across the band by taking the Fourier transform 
of the path difference. This technique is inherently frequency-independent. However, in order 
to measure Stokes U, the instrument needs to  be rotated by 45". 

There are several qualities that make this architecture a viable candidate technology for 
future astronomical polarimeters operating in the far-infrared through millimeter parts of 
the spectrum. First, whereas a given birefringent plate can be built to  measure either circular 
or linear polarization but not both, the Martin-Puplett architecture allows for designs that 
cover the entire Poincar6 sphere. Second, since the path difference between orthogonal linear 
polarization states is variable, these devices are easily retuned for use at multiple wavelengths. 
Note also, that  since the QVI is used in reflection, frequency-dependent antireflective coatings 
are not required. Finally, this architecture requires only small linear translations that will 
eliminate the need for complicated systems of shafts, gears, and bearings that are common 
in birefringent plate modulators.6 All of these qualities are beneficial to the future effort 
to measure the polarized flux of astronomical and cosmological sources from space-borne 
telescopes. 

Our frequency-dependent analysis will require the use of Jones, Density, and Muller ma- 
trices, so we begin with a review of these methods (section 2). In section 3, we derive the 
Muller matrix representation of the Martin-Pupplett interferometer. Using this result, we 
calculate the frequency dependent performance of a QVI in section 4. Section 5 describes 
various applications of the modulator, and section 6 gives the results of laboratory tests of 
the polarization-modulating properties of a single &VI. 

2. Polarization Matrix Methods 

In this section, we review the properties of Jones, Density, and Muller matrices and their 
relationships which enable analysis of the &VI. 

2.A.  Jones Matrices 

Jones matrices7 are a convenient way to analyze radiation as it propagates through an optical 
system in architectures in which it is important to keep track of phase. For the ideal case, 
we assume that all ports are matched and so no cavities are formed. These two conditions 
apply to the QVI when used in an astronomical instrument. This formulation is applicable 
for coherent radiation; however, it can be extended using using the closely-related formalism 
of density matrices to treat the problem of partially polarized light.' 
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Jones Matrices are 2 x 2 matrices that contain information about how the orthogonal elec- 
tric field components transform in an optical system. The input Jones vector is defined as 
follows: 

The output vector from an optical system can then be represented by IEj) = j ( E i )  where 
J is the vector transformation introduced by the optical system. The power measured at a 
detector at the back end of such a system is given by 

The matrix Ide t  is dependent on the properties of the detector used to make the measurement. 
In the Jones matrix representation, Stokes parameters are represented by the Pauli ma- 

trices and the identity matrix. 

In using the Jones matrix formalism in this paper, we will use the convention that a 
bar over the Stokes symbol indicates its Jones matrix representation. An un-barred Stokes 
parameter represents measurable power (e.g. Q = ( E ( Q ( E ) ) .  Note that the measured power 
in each of the Stokes parameters are 

These equation connect the Jones matrix formulation of the Stokes parameters to their 
familiar  definition^.^?^ 

These four Stokes matrices have the following multiplicative properties. Defining 
(fo, 5 1 , 5 2 ,  53)r(f, &, U, v), 505, = 5,bo = 5, for CY E (0,1,2,3) and 5 j 5 k  = f j k l i 5 i  + 
djkao for j ,  I C ,  1 E (1,2,3). These four matrices form a convenient basis for expressing Jones 
matrices. Table 1 shows both the explicit Jones matrices and the Stokes expansion for se- 
lected optical transformations. The mirror transformation, which can be expressed simply as 
Q, sets the convention for how the (fi, V )  coordinate system is propagated through the op- 
tical system. Kote that for some structures, the Stokes expansion provides a convenient way 
to express optical elements. Successive transformations can be calculated either by matrix 
algebra or by the Pauli algebra defined above. 
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2. B. Density Matrices 

In the general case of partially polarized light, polarization arizes because of time-averaged 
(statistical) correlations between the electric field components. The density matrix is a com- 
plex 2 x 2  matrix that fully characterizes the polarization state of the light. It is given by 

Here, the brackets indicate a time average. If the density matrix is expressed as a linear 
combination of the Pauli matrices, D = I 8 0  + Q81 + Ua2 + Va3, the coefficients are the 
Stokes parameters. 

The transformation of the polarization state by an optical system is given by a similarity 
transformation, b' = J t D J .  Here, is the Jones matrix describing the optical system. For 
the purposes of this paper, we are interested in how the polarization state of the detectors 
map onto the sky, and so D s k y  = JtD,jetJ. Note the similarity in the transformation of the 
density matrix and the expression for total power in the Jones matrix formalism (Equation 3).  

- _ _  

2. C. Muller Matrices 

Until now, no limitations have been placed on J ,  the matrix describing an optical system 
under consideration. If the magnitude of the determinant of J is unity, then there is a 
homomorphism between the group of 2 x 2  matrices having Idet(J)I = 1 and the Poincar6 
or Inhomogenous Lorentz group. In this case, the quantity I 2  - Q2 - U 2  - V 2  is preserved 
under these transformations. In analogy to special relativity," the inhomogeneous Lorentz 
group can be represented by a group of 4 x 4  real matrices acting on a Stokes vector, s = 

( I ,  Q, U ,  V ) .  These matrices are known as Muller matrices. For our purposes, we consider 
the Muller matrix that maps the Stokes parameters at the detector to the sky: Ssky = G S ' d e t .  

For polarization modulation, we are particularly interested in the case for which the Jones 
matrices describing our optical system are unitary. In this case, Stokes I decouples from the 
other Stokes parameters and the quantity P2 = Q2 + U 2  + V 2  is preserved. This subgroup 
can be represented by 3 x 3 orthogonal submatrices that represent symmetries on the surface 
of a sphere in a space having Stokes Q, U, and V as axes. This sphere is called the Poincark 
sphere. 

As an aside we note that if we restrict the group of Density matrices to  those with positive 
determinants, the system is described by SU(2), and thus there is a homomorphism between 
this group and SO(3) the group of rotations on the Poincark sphere. These are the groups 
that are important to  a wave plate; however, the physical reflection involved in the QVI 
architecture introduces a negative determinant, resulting in combinations of rotations and 
reflections on the Poincark sphere. 
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3. Martin-Puplet t Interferometer 

As an example of a &VI, we specifically consider the case of the Martin-Puplett interferometer 
with the input polarized removed and propagate the polarization through the architecture 
using the formalisms described above. Here, we start with a Jones matrix and use this 
description to calculate the elements of the corresponding Muller matrix. 

A diagram of a Martin-Puplett Interferometer is shown in Figure 1. Light enters from t,he 
left and is split into two orthogonal polarizations by the 45" grid. The two components of 
polarization are then sent to two roof top mirrors which rotate the polarization by 90" with 
respect to the grid wires. The beams recombine at the beam splitter and exit the device at 
the top. 

We will examine this device using Jones matrices, labeling the angle of the device to be 
the angle of the beam-splitting grid as seen by the incoming radiation. We will first look at  
the case of an interferometer at a rotation of 45" and then generalize to an arbitrary angle 
using a similarity transformation. For the simple case, the Jones matrix representing this 
configuration, JMp(7-r/4), can be expressed as the sum of the Jones matrices for the radiation 
in each of the arms of the interferometer. 

In turn, each of these terms can be decomposed into a product of the Jones matrices of the 
individual elements in each optical path. The Jones matrices for these elements are given in 
Table 1. 

Making the definition A = 47-r(dz - d l ) / A  and setting 6 A/2, we arrive at the following. 

Next, we derive an expression for a Martin-Puplett interferometer placed at an arbitrary 
angle 8. Recall that  the definition of 8 we have chosen is the angle of the grid with respect to 
I? for the radiation at the input port. To do this, we transform into the coordinate system 
for which we have already solved the problem, apply the transformation for J~p(n , '4 ) ,  aid 

then transform back. In the case of the Martin-Puplett interferometer, there is a subtlety. 
Because the Martin Puplett architecture involves an odd number of reflections, the angle of 
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the device a s  viewed from the outgoing light is the negative of that viewed from the incoming 
light. This reflection is accounted for in the similarity transformation. Setting x = (8 - 7r/4), 
we note that 

cos + i sin E cos 2% -i sin E cos 2x 
i sin E cos 2x -cos[+ isinJsin2x 

. .  

‘Os E - sin ‘Os 28 -i sin E sin 28 
i sin E sin 28 - COS [ - i sin [ cos 28 

In terms of the Stokes parameter basis set, this expression is 

Note that within a phase factor (which is irrelevant in a measurement of power) j ~ p  = 

Q & p .  This means that the action of the Martin-Puplett modulator is equivalent to  that of a 
birefringent plate (a relative retardation between orthogonal linear polarization components) 
followed by a reflection (represented as  the Jones matrix Q). 

The matrix in Equation 17 is unitary, and its determinant is -1. Thus its Muller represen- 
tation is expected to describe symmetries on the Poincar6 sphere. By expanding the density 
matrices in the Pauli matrix basis both before and after performing the similarity transform 
corresponding to the optical system, one can generate the Muller matrix for the system. 

I 1 0 0 0 
0 cos2 28 + cos A sin2 28 - sin 28 cos 28( 1 - cos A) sin 28 sin A 
0 sin 20 cos 2 q 1 -  cos A) - sin2 28 - cos A cos2 28 - cos 28 sin A u ~ p ( e >  = 

0 sin 28 sin A cos 28 sin A - COS A 
(18) 

r 
This matrix can be expressed as a product of symmetry operations on the Poincar6 sphere. 

M M p ( 8 ,  A) = ~ Q v ~ Q , R ~ , ( ~ ~ ) R Q ( A ) ~ ~ , ( - ~ ~ )  = r Q v F Q u a W p ( 8 ,  A) (19) 

Here, F Q ~  is a reflection about the Q - V plane, FQ, is a reflection about the Q - U plane, 
R v  is a rotation around the V-axis, and & is a rotation around the Q-axis. The matrix 
&fwp(8)  A) is the Poincarh sphere transformation for a wave plate. This transformation is a 
rotation about an axis in the Q - U plane oriented at an angle 28 measured from Q towards 
U, where 8 is the physical angle of the fast (or slow) axis of the wave plate. 

4. Polarization Modulation 

We assume that the detector at the back end of our optical system is sensitive to  Stokes Q. 
This is essentially a statement about the orientation of the analyzer in the optical system. 
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Strictly speaking, a Q sensitive detector requires a differencing of two orthogonal linearly 
polarized detectors with an orientation that we choose to define the Q-axis. However, the 
following discussion also applies to the class of polarized detector strategies that  only collect 
one linear polarization. Such detectors are technically sensitive to Q r t l ,  but, to lowest order 
or in ideal modulation, I does not couple to the polarization modulation. 

The modulator changes the polarization state of this detector as projected onto the sky. 
For a single Martin-Puplett modulator, the polarization state that the detector measured 
can be calculated from the second column of the Muller matrix. 

Qdet = Qsky(C0S2 28 + cos A sin2 28) + u s k y  sin 28 cos 28( 1 - cos A) + &ky(sin 28 sin A) (20) 

For the Martin-Puplett architecture, 8 is fixed and A is modulated. Using a single Martin- 
Puplett, it is not possible to completely modulate Q, U, and V .  To see an example of this, 
consider the case, where 8 is set to n/4. In this case, 

In Fourier transform spectrometer applications, a grid is placed in front of the mechanism 
so as to  set the initial polarization to  &(A). The assumption here is that the light is approxi- 
mately unpolarized such that Q(X) = iI(X). Here, I ( X )  is the spectrum of the radiation. The 
power remaining in the Q polarization state at the output port of the interferometer will be 
a function of the incident spectrum and the wavelength-dependent phase delay introduced 
by the intereferometer. 

&'(A, 6) = &(A) cosA (22) 

where A = 47r6/X, and 6 is the path difference. In this case, &(A) is the spectrum of the 
incident radiation. A bolometric detector sensitive to Q will measure the integrated power 
as a function of path difference: 

Q'(6) = Q(X)+(X) cos AdX 
0 

Here, +(A) is a function describing the effective frequency response of the instrument. 
Taking the Fourier transform, one finds that 

Q(X)+(X) = 1'' Q'(6)e2"i6/x'd6 
61 

(24) 

Here, bl and 62 are the minimum and maximum path differences of the scan. upon calibration 
of the instrument's frequency response, the spectrum of the source is recovered. Thus, our 
analysis confirms that the Martin-Puplett interferometer can be used as an FTS with a 50% 
maximum efficiency. 
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On the other hand, in the absence of the initial polarizer, the interferometer will modulate 
the power of the source that is present in both the Q and V polarization states. For the case 
where V = 0, the Fourier transform will produce the spectral dependence of Stokes Q in the 
source. This particular modulation scheme is notable in that it is frequency-independent . 
The major drawback for this architecture is its insensitivity to Stokes U .  For a space-borne 
experiment, U can be recovered by rotation of the spacecraft. For ground-based instruments, 
sufficient rotation is problematic, and thus an alternative approach may be required. 

An alternative to instrument rotation is to place two such devices in series. It is possible to 
calculate the functional form of the polarization signal on the detectors by simply chaining 
the two Muller matrices together. The transfer equation of the optical system now looks like 
Ssky = M~p(81,Al)M,p(e,,A,)~d,t Note that modulator 2 is closer to the detector than 
modulator 1. Because our detectors are sensitive to only Q, we solve the second column of 
the resulting matrix. 

Qdet = Qsky[(cos2 264 + cos Al sin2 201) (COS, 28, + COS A, sin2 28,) 

- sin 201 COS 201 sin 28, COS 28,( 1 - COS A,) (1 - COS A,) 
+ sin 281 sin 282 sin A1 sin A,] 

+Usky[sin 2Q1 cos 2 4  (1 - cos A,) (COS, 28, + COS A, sin2 28,) 

-(cos2 264 + cos A, sin2 28,) sin28, COS 28,(1 - cos A,) 

- cos 201 sin 282 sin A, sin A,] 
+Vsky [sin 201 sin A1 ( cos2 28, + cos A, sin2 28,) 

+ cos 201 sin 28, COS 28, sin Al (1 - cos A,) 

- sin 282 cos A1 sin A,] 

(25) 

We now consider the specific case where 81 = ~ / 8  and 82 = n/4. Polarized sensitivities 
for selected pairs of phase delay settings for the pair of modulators are shown in Table 2. It 
is possible to fully characterize the polarization state. The simplest method for doing this is 
adopt a single phase delay over the entire bandwidth. In this case, one sets the modulators 
to the desired detector polarization sensitivtiy and makes a measurement. One then repeats 
this measurement for each state and builds up information about the polarization state of 
the source. 

One of the strengths of this modulator is its ability to modulate quickly between different 
polarization states. This has the advantage of putting the polarization signal above the l/f 
knee of the instrument noise spectrum without having to  resort to other modulation schemes 
such as chopping of the secondary or scanning the telescope. 

It is also possible to extend the bandwidth in a way similar to the single modulator above. 
One could scan these modulators through a range of delays and extract the frequency- 
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dependent Stokes parameters. 

5 .  Other Implementa t ions  

The Martin-Puplett architecture is not a unique implementation of a &VI. In fact there are 
several quasioptical arrangement of grids and mirrors that correspond to Jones matrices that 
differ only by an absolute phase from those that describe the Martin-Puplett. The simplest 
of these designs is a system consisting of a polarizing grid placed in front of a mirror. This 
design is similar in structure to a reflecting waveplate,12 but in this case, modulation occurs 
by modulating the grid-mirror difference rather than by spinning the plate. This alternative 
design for a polarizing interferometer has been previously employed of its compact features 
and relative ease of constr~ct ion. '~  

6. Systematics 

In developing a polarization modulator, one must consider the possibility of instrumental 
effects introduced by the action of the modulation. In a dielectric half-wave plate, such an 
effect arises from the absorption properties of a birefringent material. Loss tangents for light 
polarized along the fast and slow axis are generally different. The result is a modulated signal 
that appears at twice the rotational frequency of the birefringent plate. For the dual Martin- 
Puplett modulator, there are two important effects to consider. First, for different settings 
of the translational stage, the illumination will potentially change, thereby introducing a 
spurious polarization signal. This problem can be avoided by restricting the use of such 
modulators to slow optical systems in which the beam growth through the modulator is 
minimal. The second concern involves the differential absorption of the grids and the mirrors 
of the modulator. For the rooftop mirrors, the incident angle of the radiation is the same for 
different modulator positions. Thus, the Fresnel coefficients for each of the two polarizations 
will remain essentially constant during the modulation process. 

7. Use as a Cal ibra tor  

In the laboratory, the ability of these devices to work at room temperature may make them 
excellent calibrators. An input polarized signal can be transformed quite easily to  test the 
polarization response of a precision polarization sensor. It can transform an initially linearly 
polarized state into an elliptical polarization state. 

8. Experimental Results 

8 . A .  Setup 

To test the concept of 
Puplett interferometer 

polarization modulation 
configuration illustrated 

using phase control, we built the Martin- 
in Figure 2. The beam exiting the horn 
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attached to port 1 is collimated by an ellipsoidal mirror. It then passes through a polarizing 
grid that has its wires oriented at a 45" angle in projection. Each orthogonal polarization is 
then launched down a separate arm of the interferometer and reflects off of a rooftop mirror 
which rotates the polarization vector by 90". The beams recombine at the polarizer and are 
refocused into the feed connected to port 2. The setup is symmetric, and so, the reverse 
light path is identical. The rooftop mirrors are placed on translational stages, such that their 
relative distance can be adjusted. The frequency-dependent phase that corresponds to  this 
path length differential is the parameter that determines the mapping between polarization 
states on either end of the device. 

This quasioptical setup is a 4-port device with the 2 ports on either end of the device being 
defined by the vertically ( V )  and horizontally ( H )  polarized electric field modes. We use an 
Hewlett Packard HP8106D millimeter wave vector network analyzer (VNA) to measure the 
scattering parameters between these modes. The calibration reference plane is shown (rl 
and I?,) in Figure 2. The VNA can be used to measure the 2x2  scattering matrices of pairs 
of these ports, so in order to  reduce contamination of our results, we place an orthomode 
t r a n ~ d u c e r ( 0 M T ) ~ ~  at the back of each feedhorn and terminate the unused polarization with 
a matched load. For the purposes of these measurements, it is useful to think of the end of 
the quasioptical device attached to port 1 of the VNA as the source and that attached to  
port 2 as the detector. We set the polarization state of the source to  be vertically-polarized 
light (a pure Q state) by orienting the waveguide appropriately. On the detector side, we 
measure both V and H in successive measurements by respectively omitting and adding 
a 90" twist to the WR-10 waveguide between the OMT and the r2 calibration point. The 
calibrated difference between the power associated with H and V gives a measurement of 
Stokes Q at the detector. We have measured the loss of the twist to  be 0.15 dB. 

The bandwidth of the test setup is approximately 78-115 GHz. At the low end of the band, 
the band edge is defined by that of the W-band feed horns, and at the high end, it is defined 
by the OMT return loss. 

8. B. Experimental Procedure 

We found the zero path length position by first maximizing the signal in the V direction 
at a point where the S 2 l  parameter was flat across the band. We then were able to use the 
first null condition to do a fine adjustment. V and H are measured for 27 combinations of 
positions of the two mirrors having path differences corresponding to 24" steps in phase for 
A= 3 mm. Four sample spectra are shown in Figure 3. We have included in these plots the 
expected spectra ( H  c( d w  and V 0; d-), adopting a global gain of 0.9 dB 
to account for the expected loss beyond the calibration port. The return loss of the system is 
about 13 dB and can be seen in the H component of Figure 3A. The transmission efficiency 
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of the horns is not constant across the band and tends to roll off at low frequencies. 

8. C. Results 

This experimental setup is described mathematically by the expression in Equation 21. In 

where A = 47r(d2--dl ) /X.  Here, H(A):!  and V(A):! are the powers corresponding to Szl when 
the twist is included and excluded, respectively. For each frequency, the relative gain factor, 
f, is calculated by fitting for the average values of the signals in the H and V configurations 
and taking the ratio. 

For every frequency, it is possible to measure Stokes Q and V .  The result of this fit is 
shown in Figure 4. We find that the average Stokes parameters measured over the 78-115 
GHz band are Q = -1.002 f 0.003 and V = 0.001 f 0.013. There is some non-zero power in 
Stokes V near the high end of the band. It is unclear as to whether this is due to a systematic 
effect or due to an unknown source polarization. 

8. D.  Resonances 

In this laboratory setup, proper termination of the unused port at both the entrance and exit 
apertures is essential, as even small reflections can introduce resonances. These resonances 
are an indication of the level of uncertainty of phase control of the radiation propagating 
through the interferometer. This uncertainty directly leads to a frequency-dependent random 
mixing between the Q and V polarization states and hence a decrease in the precision of the 
Martin-Puplett interferometer as a polarimeter. We have found that this systematic “noise” 
can be controlled by various levels of termination of the unused polarization. The addition 
of the OMTs in the signal chain reduced the noise in the ,921 parameter from 3 dB to 1 dB. 
We also added a horizontal grid at the mouth of the source feedhorn to redirect any residual 
H component to  an eccosorb beam dump. This grid reduced the noise in ,921 to 0.25 dB and 
also reduced the average coupling of Q into V from 4% to under 1%. 

On a telescope, this problem is mollified by the fact that the source port is nearly perfectly 
terminated on the sky. This greatly reduces phase uncertainties in the system as well as the 
need for excessive polarization filtering. 
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9. Summary 

We have described a new technique for polarization modulation and calibration applicable 
from the far-infrared through millimeter parts of the electromagnetic spectrum. In the far- 
infrared through submillimeter where bandpasses are typically AA/A - 0.1, this device can 
be used in a similar manner to a half-wave plate. Broader bandpasses (AA/A N 0.3) may 
be accommodated using more complex modulation schemes. In the millimeter, this device 
may find use as a partially-polarized calibration source. The Martin-Puplett architecture 
provides a modulator that can be made robust, broadband, and easily tunable to  different 
wavelengths. In addition, it allows for the complete determination of the polarization state 
of the incoming radiation by the measurement of Stokes &, U, and V. 
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Table 1. A summary of physical transformation of optical elements, their Jones 
matrix representations, and their Pauli algebra representations are given.1° 
For the linear distance transformation, d represents the distance traveled. For 
the mirror, a rotation of the mirror has no effect, and thus Q is a general 
representation for this element. For the wire grid, 6 is the angle of the grid 
wires with respect to  the I?-axis. For the rooftop mirror, 8 is the angle between 
the roofline and the H-axis. For the birefringent plate, 8 is the angle between 
the fast axis of birefringence and the I?-axis, and is half of the phase delay 
introduced between the orthogonal polarizations. 

Description Symbol Matrix Representation Stokes Expansion 

fexp  (i2.rrdlX) 

Mirror J M  (; -9 )  

sinZ e 
- sin e COS e 

- sin e cos e 
cosz e Wire grid (trans.) JWT(0) 

C O S ~ ~  sin28 
sin2e cos28 Rooftop mirror JRJRT 

Q 

+(Q + ICOS 2e + iV sin 28) 

ices e + i0 sin e 

icos 28 + iV sin 28 

cos E - i sin ( cos 28 - i  sin E sin 28 
Birefringent plate JWp(0,E) ( - i  sin sin z e  cos E + i sin E cos z8 ) fcos t - sin E(Q cos 20 + sin 20) 
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Fig. 1. The propagation of the electric field components and the (B ,6 )  co- 
ordinate axes through a Martin-Puplett interferometer at an angle of 7r/4 are 
shown. When dl  = d2, this device behaves like a mirror. When there is a path 
difference, it changes the polarization state of the incoming radiation. 
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Table 2. The mapping of Qdet onto the sky for selected values of A, and A, 
for dual modulators is given. In this case, O1 = ~ / 8  and 02 = ~ / 4 .  
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Fig. 2. The modified Martin-Puplett interferometer is symmetrically fed by 
a pair of W-Band feed horns (25-27 dBi) that are collimated by ellipsoidal 
mirrors (f=25 cm). Each of the two rooftop mirrors reflect a component of 
polarizations. The mirrors are mounted on transports that are used to adjust 
the path lengths of the individual polarizations. The polarizing grid is mounted 
such that the wires make an angle of 45" with the roof lines in projection. The 
dashed and dotted lines show the positions of the beam radius (8.7 dB edge 
taper) and 20 dB edge taper, respectively, of a Gaussian beam propagating 
through the structure for a 26 dBi feed and a wavelength of 3 mm (100 GHz). 
v v c  l i a v t :  IiiusLicLLeu L i l t :  iuc.aiiuI1 VI u t :  YU c w i s i  UII pulL 2 iiiab C U I I V ~ ~ L S  ~ i l e  
sensitivity of port 2 from V to H. The~l ibxa t ion  reference pla~ie is also shown 
(rl and r2.) 
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Fig. 3. The output spectra are shown for four different values of d l  - d2: (A) 
-13 pm, (B) 587 pm, (C) -813 pm, and (D) -1013 pm. The red solid line is 
the spectrum of the V linear polarization measured at port 2 of the VNA. 
The blue solid line in each plot is the spectrum of the H linear polarization 
measured at port 2. The H polarization is measured by adding a 90" twist in 
the WR-10 waveguide attached to port 2 of the VNA. Theoretical predictions 
for H and V are plotted as blue and red dashed lines, respectively. 
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Fig. 4. The normalized Stokes parameters q and v are calculated as a function 
of frequency by fitting to the 16 mirror positions. The mean values of q and v 
across the 78-115 GHz band are -1.002f0.003 and 0.001-+0.013, respectively. 
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